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ABSTRACT

A supersaturated viscous mud overlaying a hard bottom material is
often critical to locomotion in many areas, To solve the problem of a
wheel or track, the familiar concepts of hydro-dynamics pertaining to in-
compressible viscous fluids maybe applied. A correlation between theory
and éxperiment is indicated, The basic problem to be solved is one of
viscous flow around a pai-tially submerged object, The variation in pres-
sure resulting from the frictiondrag causes a bulldozing effect in front
of the wheel, and a resulting wake at the back part of the wheel. The
pressure drag may be reduced by streamlining the wheel which reduces
both the amplitude of the pressure wave and the width of the wake 'behind
the wheel, A comparisonbetweenvarious wheel forms has been made and
presented in chart form,

A study of the correlation between the boundary layer theory and
wheels in viscous fluids is suggested, Contrary to accepted practice the
usual boundary layer theory seems to apply to a viscous fluid flowing
around a partially submerged obje ct when a turbulent wake is formed.
Itis further suggested that a series of tests be made with muds of various
viscosities and wheel forms to correlate the boundary layer thickness and
the pressure distribution in the flow field surrounding the wheel as well

as an attempt to solve the Navier-Stokes equa'dons.~




DRAG COEFFICIENTS OF LOCOMOTION OVER VV’ISCOUS SOILS
Part II

Generanl Theoretical Background

Itis often necessary for a vehicle to cross a terrain composed of a
supersaturated viscous soil overlaying a hard bottom. At present the in-
fluence of viscosity, as it relates to the drag resistance of vehicles, is
not included in the accepted theory of soil mechanics, However, if a
rational basis for vehicle de s ign is to be developed, the effects of vis-
cosity and density should be considered, (1) Results from experiment and
analxgis indicate that the theory of fluid dynamics of viscous incom-
pressible fluids is applicable for the determination of the drag resistance
of wheels in viscous mud, (2) ’

The .baq.i.c prbblem to be solved is one of viscous flow around a
partially subme;‘ged ‘object, see Figure 1, In all cases the velocity is
small and the velocity pressure is negligibie. Variation in pressure re-
sulting from the friction drag causes a bulldozing effect in front of the
wheel and a resulting wake behind the wheel, It should be expected that the
pressure drag may be reduced by streamlining the wheel which reduces
the amplitude of the pressure wave and which decreases the thickness of
the wake behind the wheel, A comparison of various wheel forms, as
illustrated in Figure 2, shows that a streamline wheel has a smaller wake
and pressure wave thana tire of rectangular shaped wheel, and thus offers
much less resistance to motion,

The fundamental equations pertaining to the fluid dynamics of in-
compréssible fluids are the Navier-Stokes equations, At present there is
no general method for the solution of these equations because they are
non-linear. There are only a few special cases, however, that can be
solved exactly, Inevery case, assumptions must be made as to the state
of the fluid and as to the configuration of the flow pattern,

The main mathematical difficulties involyed in the solution of the
Navier-Stokes equatibns are due to the fact that the inertia terms are non-

linear, Some solutions are possible by assuming that we have incom-




pressible fluids with constant velocity, Additional solutions may be ob-
tained by linearizing the equations, by considering very large viscosities,
or by assuming very slow motion,

Because of the mathematical difficulties encountered in the solution
of the general differential equations, a major portion of the effort has been
directed along experimental lines with the development of empirical equa -
tions, Muchuse has been made of the laws of similitude and dimensional
analysis to extend the results of small scale tests to the prototype,

The equations of the boundary layer are approximate and seem to
apply to viscous mud even though a turbulent wake is formed behind the
wheel as it moves through the viscous fluid, The thickness of the wake
dependsupon the geomefry of the wheel and is reduced by streamlining the
wheel, see Figure 2,

The classical theory of hydro-dynamics pertaining to ideal fluids has
been extensively investigated in the past, (3) Nevertheless, the classical
theory fails to explain some of the phenomena associated with real fluids,
The ideal fluid is assumed to be frictionless and incompressible. In
order to explain such characteristics as skin friction and form drag on a
body, a theory of real fluids is necessary. (4) Viscosity is known as in-

ternal friction and is defined as that characteristic of a real fluid which

exhibits resistance to any alternative of its form. Viscosity is the co- .

efficient which relates shearing stress with the velocity gradient in the
following way:

T dU

=p.dx ------------------------------------- -1

where 7 is the shearing stress between two layers of the fluid

dU_ is the velocity gradient
dx

It is the coefficient of viscosity

From the above equation, we see that the tangential force per unit
of areahere defined as the shearing stress T is proportional to the slope

of the velocity curve, Q_U,where the constant of proportionality is the
dx



viscosity j. :
- Thus, one may determine the dimensions of the coefficients of vis-

cosity as follows:

b= 'shearing stress = %LZ + L = .m ------ ————
velocity gradient t L - tL tL

where m is the mass

t is the time

L is the length

A viscous soil such as a supersaturated mud is in general a non-
Newtonian fluid as the coefficient of viscosity varies with the rate of def-
ormation, | o

The coefficient of kinematic viscosityis often denoted by the symbol,

v, and may be determined as follows:

ST = = L s
v = P tL 0 L% t - e n - - - - - -3
The kinematic viscosity, v, isimportantwhere forcesare due mainly
to viscous and inertia effects,
For ready reference, some of the typical values for coefficient of
viscosity, density, and kinematic viscosity for various materials are

tabulated below,

2 2

.F 1b sec slugs ft
4 B v
' ft ' ft-sec - Bec
Air o 0.00236 0,0377 x 10™> 16,0 x 10”°
Water 1,97 2,13 x 1073 1,08 x 107>
Mud (typical) 2,4 14,400 x 10™> 6,000 x 10™°

Fundamental _Egﬁafions of Fluid Dynamics for Viscous Incompressible

Fluids

- The fundamental equations of fluid dyna mics for viscous incom-

pressible fluids are those knownas the Navier-Stokes equations. For an




incompressible fluid with constant density, the Navier-Stokes equations
relate the five unknowns: 3 components of velocity u, v, w; the temper-~
ature, T; and the pressure, P, with the independent variables X, Y, Z;
‘and time, t, The unknown maybe determined by considering the equations
of state, continuity, and motion, The proper solution of the five equations
must satisfy the initial and the boundary conditions which are usually stated
orassumed, By substituting the stress-strainrelations into the equations
of motion which satisfy the equations of compatibility, the following
Navier-Stokes equations of motion for incompressible viscous fluids may

be derived and presented herein for ready reference,

“ 2 2 2
d
fm_=xﬁg+u(?%_+%.§_+ala)

x y 0z

Dt Ox v
o 2 2 2
SRy By 2, Ay, 2y
" Dt y Ox dy 0z
2 2 2
fp-——=z--gp—+pf—§-—‘%~+—9——z""—+a‘é") ----- 5
Dt 0z 0x oy 0z
where LD _ 3 0 ) 8
= . tw =ty syt Y Ton
Dt at
du + Bx_’_‘ ow 0

0x oy 0z

Basically, itis extremely d1fficu1t to solve exactly the above Navier-
Stokes equations of motion because of the non-linear terms. However, it
is possible to obtain a number of approximate solutions for special cases
if one is willing to make assumptions concerning the state of the fluid and
also by considering a very simple configuration of the flow pattern.
Nevertheless, if oneis to determine mathematically the three components
of velocity in space and the pressure distribution of the fluid, the solution

of the Navier-Stokes equations must be obtained,




The problem for which we desire a solution is represented in Figure
1, which shows a partially submerged wheel moving through a viscous
fluid with a velocity, U. The major portion of the flow is laminar with a
boundary layer resulting from the viscous forces, A bulldozing effect
results from the inertia forces and frictional drag producing an additional
pressure drag. :

Even for fluids with large viscosities and very slow motion, the
exact solution of the Navier-Stokes equations is difficult, For incom-
pressible fluids with slow motion, the non-linear terms of the inertia
forces may be neglected, then the Navier-Stokes equations reduce to the

following simple form.

du , 1 @p . 8%y %y | 8%,
— + = = vt 5+ >
ot 5’ 0x 0x oy 0z
dy .- 1 8p _ a2y 82y 2%y
+ = vlT5 4 5t 5
ot ﬁ dy ox oy~ P
dw , 1 8p - _,8%w 0%w . 8%w
+ = vl ¢ 5t
ot ¢ ot 0x dy 8z  ceemmmeemoa- 7
du oy dw_
0x * oy * 0z 0 | e mceseccemcceccse—ca- ————8

The solution of these equations gives results that are approximate and the
accuracy may be improved by considering the effect of the non-linear

terms,

Similitude and Dimensionsal Analysis

Since it is extremely difficult and frequently impossible to solve
the Navier-Stokes equations for viscous fluids, it is often convenient to
determine a series of relations that exist between various cpnd‘itio‘ns by
using other techniques such as the law of similitude and dimensional

analysis, The major effortinfluid dynamics has been along experimental




investigations to determine the confficients that permit one to compute
the desired relations by use of empirical equations,

Itwasfirstdetermined by Osbourne Reynolds that dynamic similarity
will exist when alterations of the units of length, time and mass trans-
form the differential equations and the boundary conditions in one case
into those of another case so that the equations completely coincide. By
equating the coefficients of the similar differential equation, various non-
dimensional parameters pertaining to identical flow fields maybe obtained,

.Another important method of determining the relationship between
the model and the prototype similar to the laws of dynamijc similitude is
to apply dimensional analysis which indicates that the physical content of
any theory must not depend on the units that are chosen for calculations,
Thus, itis possible to use this technique to obtain parameters character-
izing the flow without even considering the differential equations which
governthe probleminquestion, The w-theoremisthe basic theorem upon
which applications of dimensional analysis are based. By use of the v~
theorem, the dimensionless quantities which characterize the viscous
flow may be obtained, v

In viscous laminar incompressible flow there are five important
variables: length, velocity, density, force and viscosity, There are three
fundamental units: length, time and mass, It is thus possible to derive
two non-dimensional quantities, called m-groups, in terms of the funda-
mental units, The first non-dimensional m-group is the drag coefficient

Cthich is used for most engineering problems,where:

[y — e
where F is a force indicating lift, drag, thrust, or skin friction

y is the density "

U is the velocity

L is the characteristic length




The second non-dimensional 7-group pertaining to viscous drag is
equal to the reciprocal of the Reynolds number and is indicated by the
following equation:

"= M = 1 . L :
_ pUL RN L Rl Ry R bkl ke 10

where J is the coefficient of viscosity

RNfis the Reynolds number

The Reynolds number is the most important parameter in fluid dy-
namics of viscous flow and represents the ratio of inertia force to viscous
force. When the Reynolds numberis small, the viscous force is predom-
inant and the effect of viscosity is important only in the norrow reglon of
the boundary l'ayer, The first dimensionless quantity is a function of the
second dimensionless quantity, m, = f (w ),... 11, that is, the force co-~
efficient is a function of the Reynolds number and is indicated by the

following equation:

= =c. ! =c./
Cp = F =Cp _j_ =Cp
fu UL Ry
or I
C. = _F = R E
F 2.2
# UL PJULT e 12

where CF’" is a force coefficient used for smill: Reynolds numbers and
slow motion, The viscosity p of the fluid offers resistance to any change
inform, Thisshearing resistance causes a pressure differential to exist
between the front and back part of the wheel as it moved through the
viscous fluid, as showninFigure2, The total drag acting on an immersed
bodyis the sum of the pressure drag and the friction drag. The pressure
Py resulting from a difference in fluid elevation ahead of and behind the
wheel, The friction drag results from the shear stress on the wetted

~ surface. ' |

The pressuredrag may be obtained by use of the following equation:




_ 2
Dp = § (p + ®(U%dA
where A
1 is the projected area in the direction of motion,
The effect of viscosity which produces resistance to the sliding of
fluid layersiscalleda friction drag Df and is equal to the following equa-
tion:

=

Y S |
D = SsldAz" CFfz A e —c—————am 14

where f is the density of the fluid
U is the velocity
A2 is the wetted area
CF is the force cogfﬁcient
The total drag on a body is the sum of the friction drag and pres-

sure drag and may be computed by the following equation:

= - 7 2 )
D-Df+DP— Ssszz+Ss(ps+l/sz)dA1 meeame- 15

which may be reduced to the following approximate equation:

L2 2
D= 7AZ+/3/(11L_ -’,_‘g__) b + l/apU?‘A1
2 2 :
. 2uU 4 .2 . 2 2,
D=2 A, + 5 (0" -0, + 1% JUA, 16

where b is the boundary layer thickness
AZ is the wetted surface '
% 1is the specific weight
hl is the elevation ahead of the wheel
h2 is the elevation behind the wheel
b is the characteristic width of the wheel
The above equationisuseful for computing the total drag when all necessary

quantities have been measured,

The total drag, D, is usually obtained from experiment, and the




drag coefficient determined as a function of the Reynolds number, RN' as

follows:

The measured values may be plotted and used at future times for the

solution of dynamically and geomét:icqily similar problems,
Test Procedures ‘ IR

The test material consisted of a'mixture of volclay and water, Vol-
clay isa special kind of bentonite clay and may be obtained in either
powder or ‘granular form. A volclay water mixture is a non-Newtonian
pseudo-plastic ‘material, The graph of Figure 3 shows kinematic vis-
cosityin ft / sec. as a function of the velocity gradient in RPM with den-
sity in slugs/ ft ‘a8 the parameter, o

The tests performed with this material were run at values of Reynolds
numbersbetween0,1and1,7, Figure 1 shows the deformation of the fluid
surface aheand of and behind the rolling wheel, In order to investigate the
wheel drag in viscous soils, a special preliminary apparatus was built,
Figure 4, which recorded the total drag of the wheel as it moved through
the viscous fluid, The mechanical function of the apparatus was as
_follows, _

The wheel (1) being te sted rolled on the bottom of the soil bin (2)
which measured 12 ft, long, 15 in.  wide and 15 in, deep by movement of
the carriage (3) on the rail (4), The carriage had a strein gage (5) elect-
trically connected to a Brush magnetic recorder with automatically re -
corded the motion resistance.‘ The carriage was moved by a drive mech-
anism (6) which had = variable transmission from 0-15 ft, per minute,.
Attheend of the soil bin the limit switch (7) stopped further movement of
the wheel, Testswere performed on wheels with different diameters and
different widths. - )




Results

The results are presented in chart form and show the drag of various
wheels in the viscous mud as a function of velocity or Reynolds number,
Figure 6 is a typical graph showing the total drag in pounds as a function
of the velocity in feet pei' minute for the different wheel types, Figure 8
shows the coefficient of drag as a function of the Reynolds number with
the different tire shapes as the parameters. A comparison of the total
drag of the various wheel types shows that the tire shape wheel has about
30% less dragthan the rectangular wheel and that the parabolic wheel has

about 60% less drag than the rectangular wﬁeel. ’
The decrease in drag is due to the streamlining and the shortening
- of the thickness of the wake behind the wheel. A comparison of the flow
fleld with the thickness of the wake for the various wheels is shown in
Figure 2, '
| By use of hfhe measured values of the total drag, the coefficient of

total drag, CD' was determined as a function of the Reynolds number by
use of the following equation:

¢p= —2
u
£,
where CD = C_
AN
Empiricai equations of this type are predominant in hydrodynamics and
permit the evaluation of drag in geometrically similar flow fields,

Correlation Between Theory and Experiment

Inorder to illustrate the agreement between theory and experiment
a typicaltest was run under controlled conditions with accurate measure-
ments of all parameters,

'Figure 1 shows a typical test with a grid system superimposed on
the surface of the fluid so that the boundary layer thickness, b, could be

10




measured, The elevation of the pressufe wave ahead of the wheel hl- and

was also measured and recorded in Figure 2,

behind the wheel h2
Measured values were submitted into equation 16 and are duplicated

here for reference:

= 0,107 £t°

U= 4ft/min,; d= 5", b= 3", A1

A, = L11 ftz, p= 0,57 1b zggc, | y = 2.4 slugs/ ft3,
fto

hl = 5,75 in‘, lfx2 = 3,5 in,

D= 2pUA, ot
2+ 2 2 2
3 > (hl -hz) + lxé.pU A

D = 2(0,57) Ay Lllli2) b, + 2.4x32,2 (5,7%- 3,5 31b
: 3,0 60 2(1728)

»

(2.‘4) 2 ‘
+ ¥ ‘%3) (0.107) 1b

+. 0.00057 Ib

1,41 1b
Velocity Pressure

D= ,331b +
Static Pressure

Friction
D= 1,74 1b Computed

The total measured drag for the rectangular wheel amounted to

f,.7"4/ pounds and was composed of three factors: the static pressure drag
was the most important and amounted to about 75% of the total drag; the
frictiondrag amounted to 15% of the total drag with the velocity pressure

drag and friction drag were about equal,
The total drag measured experimentally may be obtained from

Figure éb and has the following magnitude:

D(Experimental) = L8 1Ib,
Thus, the experimental value of 1,82 lb compares closely with

the computed value of 1,74 lb,

11




The following data pertains to the tire shaped wheel:

) 2
D=2pUA, + @ 2 | 2 ,1+%(U%,
—2 Tz ™M 2
D= 2(0,57) _4_ (0.9)(12) + 2,4(32,2)(5,75%-4.00)(2.74)
3.0 60 2x1728

2
+i2.4 (—g5) 0,097
2

D= 0,274+ 1,04+ 0,000515
D = 1,31 computed

D= 1,25 measured

The following data pertains to the parabblic wheel:

D=2pUA, + 4, 2 . 2.1 2
’*"3‘""2" > b2 -nA b+ puta
D= 2(0,57) .4 0.76 (12) + 2,4 x 32, 2(5,5%-4,2%)(2.1)
3.0 60 2(1728) :
2

+ (2, 4) (-—%5— (0.073)

D= 0,231+ 0,56+ 0,00039
D= 0,791 computed

- D= 0,75 measured

' The above agreement is excellent and shows the relative influence

of the parameter on the total drag of the various wheel types,

Conclusions
1, Frqmthe results of the work conducted to date, it can be deduced

that the laws of fluid dynamics are applicable in the determination of the
drag in extremely loose supersaturated soil, and that viscosity is a con-

venient factor in the characteristiés of such soils,

12




2. In orderto correlate theory with experiment, it is necessary to
measure the fluid profile in front of and behind a‘mc"wing wheel, This is v
necessary in order to be able to cdnipute the pressu.r‘e drag. The effect
of the velocity pressureis very small for the viscous fluids with very slow
motion and may be neglected.

3. Variations in tire form which result in the decreased thickness
of the wake trailing a wheel reduce the drag proportionately, A parabolic
wheel offers less drag resistance than'a tire-shaped wheel, and both
offer less resistance than a rectangular wheel,

4, Inextremely loose supersaturated soils, it is necessary to
measure the viscosity in order to determine the drag resistance.

5. In any soil value system the effects of viscosity should be in-

cluded in the theory for both design and analysis,

Recommendations
1, Itis recommended that further study be continued to determine

‘the influence of the boundary layer on the drag coefficient of viscous fluids,

2. Itis recommendedthat further study be made to correlate theory
with experiment by measuring all parameters pertaining to the problem
including pressure wave, wake, width didd boundary layer thickness.

3. It is recommended thet theoretical work continue in order to
obtain solutions of the Navier-Stokes equations as they pertain to viscous
flow around partially submerged objects,

4. It is recommended that a new type portable viscometer be de-

veloped to measure the viscosity of fluids in the field.
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Fig.8. Chart Showing Drag Coefficients as a
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